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ABSTRACT

This paper is the first in a series devoted to the analysis of the

regularity of the solution of elliptic partial differential equations with

piecewise analytic data. The present paper analyzes the case of linear,

second order partial differential of elliptic type. It concentrates on

the case when the domain 0 c R2  is a polygon, boundary condition are of

changing type and coefficients are analytic on 5. The main result states

that the solution belongs to a countably normed space based on weighted

Sobolev spaces of all orders with weights located in the vertices of the

domain and points where the type of boundary conditions changes.

These results are essential for the design and the analysis of the

h-p version of the finite element method for solving the elliptic differ-

ential equations of structural engineering. See [6], [11].
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1. THE PRELIMINARIES

1 .1. INTRODUCTION

In applications, as for example in structural mechanics, the prob-

lems of elliptic partial differential equations are typically

characterized by piecewise analytic input data. The boundary of the

domain is piecewise analytic with corners and edges, the coefficients of

the equation are piecewise analytic with interfaces having corners and

edges. The type of boundary condition is abruptly changing but they are

piecewise analytic, etc.

The regularity theory is typically developed in the framework of

Sobolev spaces. We refer here e.g. to the survey [15] and to the monogra-

phy [10], [14] addressing the problem of unsmooth boundary. We refer to

[2] for more classical results. Results mentioned above do not

characterize sufficiently accurately the class of solutions of problems of

applications. The detailed knowledge of the properties of the solutions

of problems of applications is essential for the design and ialysis of

effective numerical methods for solving these problems. We mention here

e.g. the h-p version of the finite element method which was recently

developed and is very successfully used in practice.* For more about the

4 theory and practice of the h-p version we refer to [6], [17] [18].

The solution of the problem with piecewise analytic data is analytic

with the exception of special areas of the domain, where the solution has

singular character. Typically it happens in the neighborhood of the

Program PROBE of Noetic Technologies, St. Louis.



corners of the domain, place where the type of the boundary condition

changes, etc.

This paper, which is the first one in a series of papers, deals with

the problem of characterizing the regularity of the solution of the linear

partial differential equation of elliptic type on a polygonal domain. It

addresses the case of constant and analytic coefficients. The main tool

of the characterization of the solution is the theory of countably normed

spaces based on weighted Sobolev spaces of all orders, when the weights

are placed in the vertices of the domain. The main result is that the

solution is from the set B(9) of functions which belong to the weighted

Sobolev spaces Hk,2(Q) for k = 2,... and Iu< 2  < Cdk 2(k2)!

with C and d independent of k. The main theorem of the paper is

Theorem 2.1 addressing the case of the Poisson equation and its general-

ization for the general equation with analytic coefficients is given in

Theorem 3.1. Theorem 3.1. can be further generalized for the case when

the coefficients have singular behavior in the neighborhood of the corners

too. (Problem of this type is important in appolicatlons when nonlinear

equations are considered.) Chapter 1 gives basic notions and prelimi-

naries. Chapter 2 deals with the regularity of the solution of the

Poisson problem. Chapter 3 deals with the general equation and Chapter 4,

Appendix proves some technical lemmas used in the paper.

1.2. THE NOTATIONS

Throughout this paper we shall denote integer by i, j, k, t, m,

n. By RI and R2 we shall denote the one and two dimensional



Euclidean space. If Q c R1 repectively Q c R2 , then Q denotes the

closure of Q in R1 , respectively in R2.

By 0 we denote the polygonal domain in R2 with boundary Q :

r, the vertices Ai, i = 1,...,M, and ri , i = 1,...,M the open edges

of 3 connecting AiI on Ai  (A0 = AM). Obviously we have aQ

M
U ri" By wi we denote the measure of the interior angle of 0 at

i=1

Ai. We allow also i = 2n, and wi = i and the polygon Q has hence

to be understood in this generalized sense. Let further r = 10 + T', r0

= U Ti' r1 = 1 - 1.O where V is some subset of set {1,2,...,M).

i ED
1.0 will be sometimes referred to as Dirichlet boundary and 1I. as

Neumann boundary.

By Hm(Q) (resp. Hm(Q)), m > 0, m integer, we denote the

Sobolev space of functions with square integrable derivatives of order

m on Q (resp. Q) furnished with the norm:

lul 2 I a (2

HM(Q2) 0 Icxl<m I2(Q

a ( '1 2 ), ai _ 0, integers, i 1,2,

la c1  + ax2 ,

Dau u

x x

a 2 1 a23)x 1 x 2  x 1  x 2

As usual HO(Q) = L2(). Further let

10
Ho(Q) [u H1 ( Q) I u =0 on r O

0



and

22
lul =al 1 I'I 0Hm(a) IaI =m H (a)

2 2

IDmU 2  
- aIa=m 2

By ri(x) Ix-Aii, i = 1,...,M, we shall denote the Euclidean

distance between x and the vertex Ai  of 9. Let B = (B1,B2,...,BM)

be an M-tuple of real numbers, 0 < BI < 1, 1 = 1,...,M, JBI
M
I Bi. For any integer k let B + k = (B1±k,...,BM±k). Further we

i=1 M B. M Bi±k
denote YN(x) = T- ri (x) and DB±k = FT r, x).

By H' ('Q), m > Z > 0, Z an integer (He-' O(Q) = H-(Q)) we

denote the completion of the set of all infinitely differentiable

functions under the norm

2 .2 m a2
lul- lu I l IID ul'BkJL, , - 1

B'(Q) H (0) Ic I2

2u2 ° = lul ) = . 0.
A(Q)PI)IczI=O

BB

For m = = 0 we shall write HOO() = (). The space Bm12(Q) was

introduced and widely used in [5].

For 0 <6 , O < w 2 let

S sw ((r,e)10 < r < 6, 0 < 8 < w),

a a aall
1 L2 a1 t2

3r 30 r 8

-. .. .. . .



and

a2 =m2
vmul2  y Ir- Vuj

For 0 < < 1, m > >

H i' (S) = (u 11,,1 2 + : Ir -1  D I (c1
H H-1 (S) Z< aI <mI 2 (S) M, CS)

and m > 0

Hs  (S) r u FeuIm (S) mO(s)

Obviously

H 0'0 (S) H 0 0 L(S) L CS)

and

Ha ( H' (S).

We will show now that H '2 (S) = 2(S).

Lemma 1.1. Let 0 < 6 < w. Then the spaces H '2 (S) and H822(S)

with 1 - rB are equivalent.

Proof. Observe

sin e
Ux r Cr o8u 8  r

r 2
r r

- ur in2 - ue sin 2e.
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Hence

Sx IL (S) < ir -R IL (s) L I - Du Sl
I al =2 Iil=1

By Lemma A2 (see Appendix) we have for lal=!

Ia '-2 a -2 z.

CDu (S) < C(E)[ 1 Ir caL-2  I S) Ill
8aI=2 H (s)

and hence

lx'd LX S) I< c(luj 2 , 2(e•HB (S)

Similarly, we have the same relation foruxlx2 and ux2x2, and hence

H2'2 (S) c H2' 2(S). The other direction follows directly.

Later we will investigate the case S when 6 = =. In this case

we will write Q instead of S4.

Lemma 1.2. Let Q be the polygon, then for j = 0,1 we have

( . a ) f 2 1 + u l -j .1- i 2 dx1 d x < C lu l H 2 ( , )

(1.1b) f -1 ,r1 2J lu 1 2r drdi < ulu 2,2
Sr i Ha )

where (rie I) are polar coordinates with respect to Ai , I i M.

Proof. We can write

m w.
= I S 6 '(A) R

• • " = | " I i - i
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m W.
R = - 1 S (A)

where S (A) c Q are sectors with the origin in Ai  such that

S 6 (A1 ) n S6 (A.) 9 for i i j. wi is the interior angle at A i.

Obviously (1.la,b) hold on R. Lemma A3 yields (1.1a) on S 6 (Ai ) and
I

Lemma '.1 yields (1 .1b) on S5 (Ai). 0

We also recall the spaces W (S) introduced by Kondrat'ev (see

:14], 1151)

Sk UL(S) 2 B kDs )W< lS<k - 2 w k (S)

Finally let

D = {T, - < T < =, 0 < e < w}

and for h > 0 and k -> 0 an integer define

Hk(D) =  jul I e 2h -rI 12d de 1 2k <}.
O<lIl<k h(D)

We will write also HhO(F) = Lh(D).

1.3. THE SPACES *E(Q) AND B'(Q)

For 2Z an integer 0 Z 9. 2 let

(1.2) (0) (i~ju EHmIZ(Q),

and

(1.3) B (a) {(x)lu EW(Q), lID l% _L 2(Q) Cd -(k-Z)!

". . ' ." .) . . "..'. . . .. . ............. ....... '. ... ..... . . . -. - , . . . . , - -" ,. , . -i
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for J u k Z, Z + 1,*... d 1 1, C independent of k).

For Z = 0 we shall write B (Q) instead B0 (Q). Constants C and d

%B

in (1.3) depend on u.

The space BZ(Q) was defined in Cartesian coordinates. There is

also an equivalent definition of BZ(Q) in polar coordinates.

Let (ri,e i) be the polar coordinates with respect to Ai ,

i = 1,...,M as before.

Theorem 1.1. Let 0 2 2. Then

(1.4) IDO'UIkZ+BIL2(Q) cd k- (k-i)! = k, k > Z

then and only then if

-2 2a'
(1.5) (f IVOul2 r 2 D2 r.dr.de)/ < C

hold for all Z al'I = k' k, a' (C!,C 2 ) and i = 1,...,M. By

DVu we denoted differentiation with respect to the polar coordinates

(r'i,ei).

Proof. We prove first that if (1.4) holds then (1.5) holds for every

i = 1,...,M. To this end we fix i and will omit to write the index

i. Then

k k
(1.6) u k= I () u k ' cos 8 sin j e.

r j=0 xI -x

Hence

(1.7) lu 12 (D2 r dr d6)'/
k k-.+S

gr

.......................................... *%Q* . . . .



F 11

k k

j 0 x1 x2 2

i C2k dk9. (k-.)!

-C 229 (2d)k 2-(k-9.)

and (1.5) is proven for a; = 0

We show now by induction that for any k -> 1:

k 9.

a(1.) Uk prve or~ c 1 2

(I a, Uk> 0 r I I a'j () 2 sin a cos 2 6 j(1 m=1 j= Litt2> 0  't 2 x -J x

1 2=m

(1.8b)) laO (k) 1 3 3k k--

" = Lit 2 £2 > 0  '~ ' !

Suppose now that (1.8) holds for k = n - 1. Then

n-1 m +1 12
u = X rm ( n-1) [- 1 2oen m=1 j=~O £I£-0I =  m''1£ xl-J+Isnx1Jeco

+ r sina j Po sin UCos

+ r sinsin cos e)UxmJx].

Comparing the coefficients we get

.

.1 """""", - . W % " " %,,,-,$F ' " ' " " ", '" " " '" ' ' ' ,' ". . ." "' " " - - '' ' ' "" ' ' " ''" ' ' " '
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a(n) - (n-1 +) (n-i)
m,Ji 1 ,i2  n-iaJ 1 £I 2  m-1 ,J-l, I, 2-

(n-1) a (n-1)

1 m,j,1+" A,2-I 2 m,J,i 1-ii 2 +1

Thus

A(n ) < m A(n-1 ) + 2A(n-
1)

m - m m-1

Using the induction assumption we get for n = k and m k

Ak < 3k k!m-

and (1.8b) is proven.

Let now D = max(1,diam 0). Then for k > 1, i _ 1

(1.9) (f r-2kl k2 2 1/o
( r r 2  6 k _ £+8 r dr de)

4

k (k) D(k+I-1)(M-1) i2a_< I I I la M JI -+ - I a
mi- J=O EI £2

> 0  m,j, 3 2  x2

S1 + 2=m

< CD1k-Z k A()d1M"
m--1

ak

k-i k k k!
< CD 2  X 3 -1 (r-i)!

M 1

< CD ki(k-i)!
- 3

where C and D3  are independent of k.

By Lemma 1.2 we have for J = 0,1

." -"-,-."."''-''; " "" " ', ."".""." ," - "" "' ''." " "- '. "-".-"-''-" -' " %\'', ' "-" -,- l • •, ' ','."".'"- " '
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(1.10) Jrdx < C lu l 2  <

a -. ,2(2 ) -1 2

Hence (1.9) holds for all k 2 Z. £ < 2 and (1.5) holds for a = 0.

Combining the arguments we have used above we get (1.5) in the full

generality.

2) We will show now that if (1.5) holds for every i, then (1.4) holds

too. First we will show that for any k 1 1

k m £I £2r-(m+ u

(1.11a) u k m b(k) sin 1 cos 2 r- (k-m+j) -1.1)uk I I m',il I£2m-j J

x m1 J=O 1'2 -20 1' 1>2 r e
1 +12 =k

(1.11b) B ( k )  ( I< 
4 k  k!

m j=O ti. I'£2 >0  m,ji1,2 ! -

1. +£ 2=k

It is easy to check that (1.11) holds for k = 0,1. Analogously as in the

first part we get

b(k) (k-1) - (k-1)m,J ,,o '2 bm-1,J,1, 2- 1 b m-i,j-1 , 1 -1, 2

- b(k - 1) + 2 b(k - 1) - (k-m+j)b (k-1)
1 m,J,2.1, 2-1 2 m,Jl-1,2 2  mrJ,2. 1 , 2 -1

and hence

(k) < 2B(k-1) + kB(k-1) + kB(k) < 2 B(k-1) + 2kB(k-1)

m - m-1 m m - m-1 m

Using the induction hypothesis we get (1.11b). Using (1.11) we get for k

>. and 2.> 1

e, & .e



r-
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(fI 2 2 2 (k- 1)

(1.12) (flu +,dx) < CD I B (k)dm-'()Z
xI  m=1

_ CD N - 0 (-)!
2

where D2  and C are independent of k. For j = 0,1 we have by

Lemma 1.2

S2 r- 2j  12 rdrd < clul 2  < C.

IJ+ I - i 8 H ,

Hence (1.12) holds for 0 Z 2, k Z and (1.4) holds for 2 = 0.

The general case can be proven quite analogously. U

Theorem 1.1 yields an equivalent definition of B'(Q), 0 < 1 S 2

(1.13) B (Q) = {u E r -2a 2r i t 2+lul 2rdr de)

< Cd k-L(k-Z)! for any k > X and

-. = k; C and d independent of k, i = ...,M)

where (rie i) are polar coordinates with the origin in A, and DVu

= u 2 In what. will follow both definitions will be used

interchangeably.

1.4. THE SPACES AN-(Y) AD B- t-Y).

Let Q c R2  be an open, bounded set with piecewise analytic

boundary DQ and let Y be part or the whole boundary 3Q. We define

Hm-/2(Y), m 2 1 as the set of all functions p on Y such that there

4
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exists f E Hm(y), with = Iy. The norm is defined by

inflfl )

where the infimum is taken over all functions f E Hm(Q) with f =

on Y.

Suppose that A i E Q or A i  Q, i 1,2,...,M, then we define

the spaces (Q), Z > 0 as in Section 1.2. Let _'Z'Z (Y)

m 1, 9 0 be the set of all functions (p on Y such that there

exists f E H14'. (Q) with (p fly and

I1m inflfl•
2-' /- (y) H-' £(Q)

The infimum is taken over all functions f E Hm-'(Q) such that fly= p.

By L2 (Y) we denote the space of the square integrable functions

on X. We also define the space B (Q), 0 Z 2 analogously as in

(1.2) replacing Q by Q. Finally B-'2(Y), 0 1 9 2, be the space of

all functions (p for which there exists f EB (Q) such that f = (p

on Y.

Remark 1. Although BZ(Q), 0 Z 1 is not a subspace of HI(Q) the

trace of f E B (Q) on Y obviously exists.

Remark 2. The norms and obviously dependRear 2/ The nom2"adl"l _(y)

on Q.

Remark 3. In what will follow Q will often be the polygonal domain

and Y some of its edges. Although the set HM-1'9 -2(Y) is
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characterized only by ai associated to the vertices of the edges Y, we

are defining the space 2 2()in dependence on B 8,.1N)
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2. REGULARITY OF THE SOLUTION OF THE POISSON

PROBLEM ON A POLYGONAL DOMAIN

In this chapter we will discuss the regularity of the problem

-Au f on 0

(2.1) u = 0 on r 0

a g on r

where

r0  -- U ri, r 1 r - rO .

iEV

r0 will be called the Dirichlet boundary, rI the Neumann boundary. If

F0 = r (respectively rI = r), then we will speak about Dirichlet

(respectively Neumann) problem. If r0 i r and r i F, then we will

speak about the mixed problem. The main theorem of this chapter is:
3_

Theorem 2.1. Let f E B (Q), gi E B2 (r'), i =,l, a

0 < 61 < 1, 8i > I - (respectively 8i > I - if

Dirichlet or Neumann boundary conditions are imposed on the edges ri,

r++, r f+l = Ai) and let r 0 ; 0. Then the problem (2.1) has a

unique solution in H1 (Q) and u E B2 (Q).

Remark 1. If r0 = 0 then the theorem still holds provided that f

and g satisfy the condition (2.38) and the uniqueness is understood

modulo constant function.

Remark 2. g1 should be undarstood as the vector g = (g,g, gp);
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1 !P

p is an integer M M such that g1 G r r, G EB (a),

a n d I 2 k P 2GdI < ,Z = 1 £1 2H  I-- IG11I

H k ,1(Q) Z 8 (Q)

Remark 3. It can be seen from the proof of the theorem that if

k' ''i H 22-) j f=,, a8 > 1 (respectively
B ' B ~ i12(

> 1 2 -) and k _ 2, then the solution of (2.1) exists in

Hk+ 2 2(Q) and

bIC+22 < c(k)(Ifl ko IG l )
HB () J=0,1 +-2

which is a kind of the "shift" theorem. Usually the shift theorem is

expressed in the terms of usual Sobolev spaces so that

mtk)

u = w 4 C ipi
i'=1

with Pi are singular functions and for w there is the same shift

theorem as for the domain with smooth boundary and without specific

estimates of various constants in dependence on k. Theorem 2.1 is in the

same way related to the known results but the authors were unable to find

the theorem characterizing the solution in the framework of the countable

normed space B (Q) which is essential for applications.

Remark 4. The proof of the theorem utilizes simple expansions of the

solution, although this reasoning is very special. This approach is used

to illuminate the main idea which will be used in Part 2 in an abstract

form without ising explicitly the mentioned expansion argument.

p

" J"-* . '" ,"-' '."* ." , - . " ,.. . ... ''., -".-.".---.---"---'.-----_.' . ,.' ',.,.. ,:,:, ...2 . (a t ) -
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2.1. AUXILIARY PROBLEMS ON THE CONE AND THE STRIP

Let

Q s = o r,efO < r < , 0 < 8 < Ai

{r,O I 0 < r < 0, = 01

r2  = {r,8 0 < r < , e =

and

D = {r,e -
< T < ", 0 < 0 < W1

r1  = {T,O <~ T , < = 01

r2= IT,8 < T~ < 6, = w

The spaces Hk,(Q), £ 2 and Hh(D) be defined as in Section 1.2.

Let CO(Q) be the collection of Infinitely differentiable functions on Q

such that:

for any u E C(Q) there exists a positive number A = A(u) such

that u vanishes on Q - QA where QA = {(r,6) < r < A, 0 <

S< W1.

Analogously we denote by C#(D) the collection of infinitely

differentiable functions such that for any u E C(D) there exists A =

A(u) > 0 such that j vanishes on D - DA where DA = I(T,0) -A < T <

A, 0 < 8 < w}. It is not difficult to show (see [12]):

Lina 2.1. C#(Q) (respectively C#(D)) is dense in

(respectively Hk(D)), k 0 2 > 0. 3

, , r , ",% .,-_' -2 .-. - '- - -=-_-,-3.-/ =.' , " - - " - , " " - "- ' - , ' ''' ' ' , '' ',h"
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LAia 2.2. The spaces 0,4(Q) and Hk(D) are complete.

Consider now the following problem on Q,

(2.2) -Au 14 a -- .2 f on Q
3r 2  r 3r r 2e

2

uj.0 = g o ej00u~j=0 go GIje0

0 n~ 16=

where go and gl are the traces of functions Go and GI defined on

Q. By the change of the variable

T= in-
r

we transform the problem (2.2) into the problem on D

(2.3a) -(a= f2, e)

au = =

(2.36u10= 90 16=

e g G e=w

where

(T,) -u(e-T ,e), f(T,e) = e-2T f(e-Te)

'(t,e) = fe )o,1

II
|i-tt-

• . .• •. . . . -, '. .. .. . , % . ." -.G (t,..- e G (e-,e- .i .0 ,1-. -. . - - - - . , ,, -. - , *

. .I .' . , ' .. .'. . .q . . . , '. . % .2 ,. " .,. - . . . . . . " ," . " .. m . " - . " . " r m # " . # ,

• ' ,." ' ,, ,., h: .,-t~a . a, ~h, l +~u. =a, "' a ', i I 4* -~* -. . .. -
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Lema 2.3. Let f E Lh(D), 6 E H2-i(D), i = 0,1, 0 < h < -, then the
hh 2w

solution u of (2.3) exists in H 2 (D) is unique and for 0 j Ial 2:
h

(2.4) ID% a-12(D) f e2hTIDlI2dT d6L h D

2 1 a
< c[1F + I I - i

) i=O H2  (D)
i~0 h

where

a1  2
1' 36 2

and C is independent of f and G1.

Proof. Because of Lemma 2.1 and 2.2, we may assume that f, i C (D).

Denote by f(A,) = 1 f e-i f(T,O)dr, G'(X,O) = F(G') the

Fourier transform (in T) of f and Gi.

Because f, G' E CO(D) the Fourier transform exists for all X.

By the basic properties of the Fourier transform we get with X = + ih,

- < E <

2 (Xe) + 2 (A,e) = ?(A,e) for 0 E I -- (o,w),
300

(2.5) u(X,O)1e=0  = g = GO00,e) ,

auT (X,6)j00 = g (Xo)I8_,.

The ordinary (homogeneous) boundary value problem for the equation
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-U" + U= 0

* auUI06 0  - 38e=w 0

has the eigenvalues Xk = i - (k-',), k = 1,2,... and corresponding

eigenfunctions uk sin - (k-1/)e. Hence for 0 < h < 1- (2.5) has

always unique solution and by [3] [12] (formula 1.14)

(2.6) I*,12 + 1X1 A ,1'(

jul() 2 M + (I)

H(I) 2

([21 1 (f C Ih 2  + 1
-h ;k H2(I)(I

+ 1A131G°(x,o)12 ,, 1I11,'(A,w)12].

C. It follows from the basic property of the Fourier transform that for any

integer _ k, s _ k and any F in the set of admissible functions

(2.7)-( - C 1 c h d de

0 -f aTe 36k-s

c+ih A k2 2 (,d6.

0 --+ih Ie_ 2  a de.

Hence for Q = F-I(o) we get

C,. . . ° - - . . . , - . - . - - . . - , " . . . ". .. . - . , - - - , - . . _ . . . . . • . . . .. . .. -. - - . -
I, " " " " " ' ," " " : - " :- .' z ' - "l - ' ; "; '' ' ' ''' '' ' - -: . " : -: "- "
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2- 2 00+ h 2
(2.8) Je 2 h-I l dTd@ f 12U dl

D De -'+ih ;022

(2.9) f eih d1O2(
e2 - led " I1 lL (I) d

D a -+ih

By the interpolation space theorem [3]

2 u 2 AI 2 1C1 21 L I 2
UH,,I2(1) - (1) 2 ( H)

(II[2 . , 2-
A C 1 )L ( ) 2  M + e,,L (I) + I a2 IL 2 ()

2 2a22  1
c(((I+ 2)IAIl + II 4 I 2

! 21 2  ! L u  2

2I IlTO 2() + 2 1  21L V

C (I' 1 2 " JD2 2

1 CII 1 L 2(1) + a2 1 L 2(1))

where C1 depends on h but not on A and a. Hence

2- 2 W+lh 2 ^2

(2.10) e e2hT 13-u -I dT dO I i au' dA
D --+ih 2

We have also

) +ih ^2 2 2

I f l L ()+(I) + +GI H(I
p-G+ih H H (V
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f 2h {72 2 ao 6 1 Z-1! 2
e+ [ I I + I II )d d

D Z=o Zae o

00+ih 2hi-O .2
(2.12) f 1X1 310(,) 2d - Cie 0(,)l 2

*--+ih H (

Ci h 6O (Ae)j 12
H (D)

+ih 02ht1(2.13) -oJ l IGl ( ,<)l dA - leh G (A,w')1Iv(1

H 1 (D)

Hence from (2.6) using (2.8)-(2.13) we get for lal = 2:

1
(2.14) f e2hi1- 2 + 6i, 2

U (D) '2-
D h i=O H - (D)h

For Z. 0,1 we have

(2h' V 2 W+ih 2Z 2

(2.15) e d. dO -f 'XI 112 x

- -- ihih l I I

1

< Ch- L (D ) + -i2
hD) i=O Hh (D)

h

-+ih
(2.16) f eehd se f d

D -ih H)

"-., , -'' "- -".- .-, -:-. ." .; .-. .. '. ' .-.,d ' .- v-:.- ' .".,- .,-. 4' ; - " < ," "< -"'," '
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h2  Dfih ,211
=+ih HI (I)

Ch-VIL(D)+ I -
Lh\J i=o H h(D)• h

and (2.4) is proven.

2) Let 0 E H2(D) and

Au = 0 in D

Hence we can write

(2.17) a(T,e) = ' a.(T) sin ire (j_)
j=l j W

(2.18) aj(T) = U(Te)sin Qj0 '/)de
.9 0

all ( = 
2 u( ) sin e (j-'/)de

W 0 a)2 "

= )) 2 a (T).

Therefore for each j, j = !,2,. aj(r) satisfies

a1 (t) - (-- (j-/))2 (t) = 0

W3

and

_ .!( j_,4V 2)_t
(2.19) aj(T) cj e w + dje W

3,

4. -, ,-. • . . - - ". . ,-,-. . ; . . . .- -. - . . .- , - - " . .o - . - , . . • ,", < V.;. 7%, ,, '- '-:m i '-/ ,- ,, ...'.',.'-'','".',. '.L ,'-.'-,<.,'o','-.',:- , , ",",t, ," '" • ,."." ," ," " "-,,""v " - ,,-.".<- V',, I
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Let now A > 0 arbitrary, then

Go > f" e 2hll 2 d-l ul
DA

f I a (T) sin .- (i-V)) 2 de)e 2hct
-A 0 J=1

+A CO2 e2hT

f f !" I )aj(T)l e dT
-A j =I

2 +A2h

f la j (-[)I e dt.
2 j~1 -A

For j =1

iT it

2 *2 2
la 1 ()l 2  = ce + dle + 2c1 dI

and hence

A 2 2hd 2hA -2hA)

f IaliU)I e hdt = 2c d !- Ce -e )
-A 1 1 2h

c (2h- -)A -(2h- -)A
+ (e -e )

(2h- -)

2 (2h+ -)A -(2h+ -)A
1 - (e W -e )

(2h+ ')

and

+A2 2ht

C> lim f la (t) e Ti

A -A
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2 (dn"_ 2h) A
ill 2hA 1 wlim - e e

A4W h 21 -2h)

1 e
(2h+

Hence c1 ,d! = 0. Similarly we get cj = dj = 0 for all 1 j j < ®. S

We have not explicitly used in the proof of Lemma 2.3 the
assumption h < -. We have used only h > 0 and h L (k-Y2), k =

1,2 ..... Assumption h < 7 is essential in the next lemma.

Leia 2.4. Let the assumptions of Lemma 2.3 hold. Let in addition

f(T,O) - 0, Gi(t,O) 0 for T < 0. Then for c > 0 and 0 Y = h

- -E, T,e - < C < 0, 0 < e < A one has2w,

(2.20) D- 2 2(h-Y)dd
(22)fJID ul e dr de

D
( C~) ci2 2ht

< () I D 'ul e dr dO, jai 2.

Proof. Equations (2.17) (2.18) (2.19) hold, and

C J f u 2e 2 dT dO f laj () 2eh d-r.
D -® :

Hence for A > 0 arbitrary

0 12 2hr -2hA
f laj(T)l e dT = 2c d.(1-e -

-A
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2c. -2(h- -(j-'.))A+ i "- ( -e W

2(h- j
w

d 2  -2(h+ -(j-',) A) )

+ (1-e W
2(h -(j-Y,))

Since 0 < h < - and A > 0 is arbitrary we have ej = 0, j =

1,2,... and

2 2  -2(h+ -(j-/))A
f laj()l2 e 2hdr (1-e )

-A 2(h + -1 (j-%))

W

0 d . -2(h-Y+ E(J-'4))AS Iaj(T)1 2e2(h -Y)Td i  (
f a (1-e)

-A 2(h-Y+ Z(j-/))

2ww
If 0 . Y = h +2w -' E > 0 then

2(- +e:)-r
f - 2 2(h-Y)T 2 2w
j u(,e)1 e dT de f lju(r,e)l e dT de
5 5

-21( (J-1)+E)A
d (1-e )O d

4J lim j < ,
A - j=1 2(E+ - (j-1)) 1 2(h+ ' (J-/);

C fl 1-,12e2h' d dO.

5P5
SSimilarly we have for Io, I 2

J c-2 2(h-Y)Ta,22 dd.f JD j1 e dT d6 < C f ID1u2 e2 h dt de.

. D

a-

,.



29

Lemma 2.3 and 2.4 address the regularity of the problem (2.3) when on

r], respectively r2 , the Dirichlet with respect to the Neumann

condition has been given. The same statement holds if on r, and r2

the Dirichlet or Neumann condition are given.

Lemma 2.5. Let f E Lh(D), 0  H2(D) (respectively C1 E HI(D)), 0 <

h < -. Then the Dirichlet (respectively Neumann) problem
W

2- 2
(2.21a) - + u f(T,)

a2 36 =
at2  ae2

(2.21 b) u I 6 0  9 16=0eO= O=O

(respectively)

(2.21c) 2-=1 e =6

has unique solution in H 2(D) and for 0 g j 2h

(2.22) JDO'uLh(D) <  fTLhD)+ -02 (respectively -1 2
h h' H h (D) H h(D

If in addition f = 0, E0 (respectively Gl) = 0 for T < 0 then for 0

Y =h + - E >0, 0 Icl 2

(2.23) f IDO'* 2e2 (h-Y)Td d6 < C f JD 12 e 2hT d
T 3e.

where !*( ,e) --3(1,e) for the Dirichlet problem and

; : v7- .. . ' .. '. -a ... '..'',' ....... v ... ... - ,.--:/.-..-.:..,.-'--..-
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G*( ,e)= c(t,e) - 1. (,e

0

for the Neumann problem.

The proof is quite the same. In the case of Neumann conditions it

is enough to realize that the summation in (2.17) if for J = 1,2,....

Lina 2.6. Let f E LB(Q), G' E H 2-1,2-1(Q), i _ 0,1, 0 < 8 < 1,

8 > 1 - 2-- and let f = = 0 for r 2 1, then the mixed problem

(2.24a) -Au = f(r,e)

u1eo = gO = G Ir

(2.24b)
au6 _ .u = g = G1IrD'n e=o r 3616=,,,

has a solution such that

i) (u - GO ) E W2(Q), u E H2'2(S I )

ii) I !ul 0 <HO(Q)

iii) There exists a constant C independent of u, f, Gi such

that for Ija 2

12 < [F 2  + 1Iil
(2.25) H <I(S) L (Q) I= I 2-i,2-i

8 = H8  (Q)

where Q = {r,e 0 < r < , 0 < e < w)

and S1  - {r,6 j 0 < r < 1, 0 < e < W1.

%4

° -. • • • , , • ° . . . .. . . . ~. . . . . . . . .
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Proof. Assuue first that Go = 0. Let 0 < h = 1 - B < 2 and T

in -. Then we have for f(i,e) = e2 f(e- ,e) and G1 (T,e) =r

e-T Gl (e-TO)

(2.26a) f e 2hTji(,e)2 dT de
D

f e-(2-h)T If(e -T,e)I d d6
D

f r 20f(r,O) 12r dr dO
Q

V* - If~(Q)

(2.26b) f e2h I,&(T,e)1 2dT dO
D

f j r2h IG(r,6) 1r dr d6
Q

f r2(B-1) IG(r,O)12 r dr d8
S1 UQ2

where we denoted

Q2= (r,)I < < r < , 0 < 0 < w}.

By Lemma A2 (see Appendix)

f r2 B-1)IG 12r dr dO
S1

2( B~a -1 )

< C[ f r 1 I1r dr d6

Icil=1 S1

Si+

\. 

]
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+ f r2 IG1 2 r dr de]
S$

and

r2(6-1)G 2 r dr de
Q2

< f IG 12r dr de.
Q2

Hence

151L (D) < CIG 1H 1 ,

and for al + a2 = 1

f hT 1 2de d6 f r 2a1+0Io! 1 2r dr dO.

D Ta1 6a2 Q r de.r er 2

Therefore

(2.27) 11 ( CIG1 1 1 1 .

h8

Using (2.26) and (2.27) and Lemma 2.3 we see that the equation

-( a93 = f in D

(2.28) 5eO =0

has aniq,je solution 0 (H 2 (D) and (2.4) holds. Let u = (in -,

then u satisfies (2.24) and for jal 2

!%
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2(al-2+B)2

(2.29) f r 2 21 u L 2 r dr d6
Q r 1 ) 2

f J e2 hT u 2 dt de

D 8 e2

2 + 151G 3
CIVI h~~l (D) HI (D)

h(D)

SC[Ifl 2 ) + IG I 2
L a~(Q ) 1 , .(Q )

B

Hence u EW2(Q) and (2.25) is proven for Go  0. For Go #0 we

define w = u - GO; then

-Aw= f + AGO  =

W w = 0 O . °  i2

1 aw= (G1 - G

22

Applying now (2.29) (respectively (2.25)) to this case we get w E W2(Q)

and

iwi2 2 + i: i2

H2, 2 (S ) C[lL a(Q) HQ

< c[1f1 2 + I IGij 2

S(Q) =0, -i,2-i

which proves (2.25) in full generality.

7:N'
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Let us prove now that ID' ( 0 < -. (2.25) shows that

ID'uI 0 < -, hence we have to prove only that

IDIUIO(2) Q2 -- Q -$ "

We~~~~~~~ haeb(Qm . o Bad0 Y=7+h-E
22

We have by Lemma 2.14 for h =I- B and 0 Y = 2 -

(230 lu2 2(ci%-2+B) +2Y 22hY'

(2.30) f ul r r dr dO = f ID 2 de 2 (h- Y )id T d6 <
Q2 Q2

Particularly for a' + 2 = we have for2

(2.31) f lari2r dr d6 < f lurr rd rde
Q2 Q2

2((z -2+B) +2Y

f IUri2r 1r dr d8 <
Q2

and

21 u2(-2+B+(I-B)+ L- -E)

(2.32) f L ju0J
2 r dr dO < f ju0J 2 r

2w

2Q2 r Q2

f uO12r 2 (- 2 +B)+ 2 r dr dO <
Q2

and (ii) of Lemma 2.6) is proven.

Analogously we have

Leum 2.7. Let f ( LB(Q), i  2i = 0,1, 0 < B <

6 > 1 - then the Dirichlet (respectively Neumann) problem
.

*., * .. .... . *-~d*J'*. s. .*._ 2
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(2.33a) -Au = f(r,e)

(2.33b) ulr 1ur2  = g0  = GOIr ur2

(respectively u1 rur 2  g = G1IrUF2

has a solution such that

i) (u - GO ) E W2(Q) (respectively u E W2(Q)), u H2,2($I ) ,

ii) Ivl u 0] C
HO(Q)

where u*(r,6) = _re) T u(r,8)dO for the Neumann problem,
w 0

iii) (2.25) holds with GI = 0 (respectively Go = 0).

Let us prove now

Leuma 2.8. Let u E I (Q) =ul f Q I1uI2r dr de < =, Ul = 01 and

u = 0 for r > 1 be the solution of the problem

-Au = f

a G

ulno r

rr

witn f E L (Q), Gi  E H2-i,2-i(Q), i = 0,1, 0 < a < 1, B > 1 - for

the mixed problem and 6 > 1 - for the Dirichlet and Neunann problem.
"3

FI
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Further let w E W2 (Q) be the solution of the same problem given in

Lemma 2.6 and 2.7. Then u = w if rO 9 0 (i.e. for the Dirichlet or

mixed problem) and u = w + c if r0 = g (i.e. Neumann problem).

Proof. We first prove the lemma for the Dirichlet problem. We may

assume -0. Since IV'w 0 by Lemma 2.7, we have for everyassume 0 = 0.SinceH wH(Q)

V E H0(Q) {v I f I 1vj2r dr dB < -, vi = 0, v = 0 for r > A(v))Q

w L eW,)r dr d =f (U V + r ueve)r dr d6
Q r Q

and hence

f ((wrUr )vr + L (we ue)ve)r dr de = 0.

Q r

Because H'(Q) is dense in H(Q) the equality holds also for

v w - u. This immediately gives w = u + C and obviously C =0. Now

we prove the lemma for the Neumann problem.

Let u* = u- - u(r ,e)de = u -bo(T) and w* = w- w(r,e)de =
0 0

w - a0 (T). Then by Lemma 2.7 IVIw*IH( < . Let

0(Q) f (u f IV1 uI2 r dr dO < , u(r,O)de 01.
Q 0

Then for any v EH having bounded sujpport

5 v + L ueve)r dr dO (UV + 1 u"v)r r d

Q r Q r
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= f (Wrv + W_ v w )r dr de : f (W*vr + 1. Wv)r dr der r 2 rrr rr6de

Q r Q

and hence

f (u* -w*)v r +- (a* - wg)ve)r dr dO = 0.
Q r

Since the set of v E Ho(Q) having bounded support is dense in H (Q) we

get u* - w* = C. Thus

u - w = u* - w* = ao(i) - bo(r) = C(r)

and because u, w solve the same problem and obviously = , we get

I Crvrr dr de = 0

Q

for any v E H = {v f JD1vj' dr d6 < -. Hence C(r) = C1 + C2 log r;

Q

but C(r) (u - w) H 1 (SI ) by Lemma 2.7, and hence C2 = 0 and u - w

= CI" U

2.2. THE REGULARITY OF THE SOLUTION ON A POLYGONAL DOMAIN n

Lemma 2.9. Let g = GIy ( Hl4'4/2(Y) where Y is the edge of M.

Then (@, 2 G)I 
" L2 (Y).

Proof. Let r. = Y is the edge connecting the vertices Ai I and Ai,

let Ai  be placed in the origin and F[lies on the x1 - axis. AssumeWi

that S6  c Q. It is sufficient to prove that on 15 = (0,6)

fr G(xio)l dxI < with B = Bi .
0

Let F r G. Then

x.

xi= r6 Gx + B- r G
B- r.

. .r

"-". " . . " .-" - . - -. -- . - .'- .- . .. .. . " "
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By Lemma A3 of the Appendix

IF IL (S ) < I H , (

and hence

IFI < CIGI1 H _Q
H (S ) )

-. 6

By the imbedding theorem F E Lp(I 6 ) for any p > 1 (see [1]) and

IFl (I ) < CIFI < CIG!
IL (Ii W HI,1( )

p H (Q)

Hence
:< B

Ir2GLI )=f r-B Fldx
-. I GUL (I) x

2 6 16, 16

< c(f r- q dx 1 ) 1/q f IFl2p)
I6 I

< iF 2 < CII<cIGlL CIl2p (16)  H< W l Hl, _S6

1

H SJ. n

where +- 1= and Bq < !, p > 1, q >. Ip q

Lemma 2.10. Let f E LB(). Then f fv dx is a linear continuous

functional on HI () and ['IH ( )), < clrlL (2W

The proof follows easily from the Schwarz inequality. See also

.. ,, 112].I

Loma 2,11. Let f L (Q2 ) H ,O(Q), Gi E H2-i,2-i( and I .

. . (Q an .....

_ .-, -; v .'2 -.-.: v ." , . ." -.' v k .-' -., , .., ..--.-. < -.--2 -.: - --' ., + ., --, -, , ., -.., .., .., .v ., . ......-.. ,...,. .. -.,...,.... .. ...-.. . . .. .... . . , .- .-. -+ ,
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Then

-Au = if

( 2 . 3 4 ) ul r0  _ = GO 0

au G 1
r! = g = 1r

has unique solution u E HI (Q) (in the weak sense) and

(2.35) Iu H1  < C [IfIL (a) ,I IGI 2-i,2-i( )
(I) i=O, (a)

Proof. Without loss of generality we can assume that Go = 0 because

AGO E L (a) and E E H1 ,1 (Q). Applying Lemma 2.10 it suffices to show8ax. 8J 1

that

f g1v dx
r"1

is a linear functional on HI ( l) .

We have 8 _£
(2.36) f g1v ds = f r 2 g1 r 2 v ds

r1  r1

(2.37) f r- v2ds < (f r-BPds) P (f IVI 2 qdx) q < HII(
r I  rlr( )

and (2.36) together with Lemma 2.9 and (2.37) shows that

If g1v dsl S ClG1 11  Ivl 1
r 1 H'(Q) H(Q)

The Lax-Milgram lemma yields (2.Qr) and the unlqtieness.

.

-
- - - - - - -

-
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Remark. If IrOl = 0 and

(2.38) f f dx + f g1 ds 0
r 1

then Lemma 2.11 holds in the factor space modulo a constant.

Proof of Theorem 2.1. Consider the polygonal domain shown in Fig. 2.1.

Let

Si,6 i = {r,8i 1 0 < ri < Oi , 0 < e < wi}  0

where (ri,ei) are the polar coordinates with respect to the vertex

Ai. (See Fig. 2.2b.)

Let Si < 1, be such that Si, 26i n sj,26 = O for i ii j, iJ =

1,...M. By Lemma 2.11 there is a unique solution of (2.1) in H1(9). By

Theorem 5.71, 5.71' and 6.61 of [16], u is analytic in Q and on ri ,

1 i M (because f and gi are analytic functions by our

assumption). Hence Theorem 2.1 holds on fQ - Si,6/1 4, i = 1,...,M and in

particular we have for Jai = k, k > 2

(2,r i Dk-2SIL ai S ' i- ' s i  /2) < i ' °  i'o k- )(2.39) Irii uIL u [i'6 -S ) 61,

Hence, it is sufficient to prove that in each sector Si,/2 1 1 M

and jai = k, h 2 we have

.'o ' . - * . - ° . ° , , , . . - - ., ° . . . . . . . . -

."", " .. . . "" " ."", ". "". ; .. , .,' , ," ', M.2 '", ," .", ." " " . ' " " ." o o , . : """"" . 1 , "



Ai-- A
rI+

A 1 +1

Fig. 2. 1. The polygonal domain.

ri -

Fig. 2.2. The scheme of coordinates (r'.,e.).
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(2.40-2 CLk-2 a2
(2.40) Iri DulL (S,< Li D P, (k-2)!

with Lip Dip Pi independent of k (see also Theorem 1.1). There are

three cases to be considered

i) Fi c r
O  ri_1 c rI

iii) ri ri_ 1 c r

We may assume that Ai  is located in the origin and ri  lies on xi-

axes. To simplify the notation we will write Si,6= S6 and i  8,

etc.

We will prove case i) only. The proof for the other two cases is

analogous.

Obviously the solution of problem 2.1 satisfies

-AU f

(2.41) uj.. G0I-

i-i i

where

F£= ri n S ,  = i-1,1.

Let

- .', ... './..%...v~... ...... .........-..........--.-... . . .
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O E C_(R')

0 (x) = 1 for 0 x 1/'

(po(x) = 0 for x 1

P6 (r) = p (r).

Denote

V - (PU.

Then, by zero extension outside S6 . function v is defined on the

infinite sector Q = [(r,6) 1 0 < r < -, 0 < e < A} and v satisfies

-Av = f + wV4Vu +uA P f

(2.42) v16=o - (PG0I=o a o=o

-V 1' av
@njel~ e=w a6= ( le = 0

Obviously v E H (Q) and f, GO, G1 = 0 for r > 1. Denote by w the

solution of (2.24) mentioned in Lemma 2.6. The using Lemma 2.8 we see

that v = w and hence by (2.25)

(2.143) H 2,2 CE'FL Q) +112,2 + 1 I113 a (S$6 ) - HB2(Q) H' (Q)

1 42.

< C[IfI (S 1 1 I1 2-,2-.s
86 Z=O HB (S

In (2.43) we have used the fact that = 0 for r > 6. Because Vs =

6
A; = 0 for 0 < r <-and r >6 we have
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IV(PVJIL (s6) < Cl1 1(S S ) C

Iu I£( <c < cIe 6_6/2) -

JUA Dj ~ CSl C

Because f E B (M), Gi E B-i(a) we get immediately from (2.43)

(2.44) IulH 2s II 2,2 s 8 6,2
8 (s6 ) H' B $6 ) H I 2 $6)

4+

* 1

c ll l, (s )  IG 1. 2_L,2_- ( + Iu 11
S 6 £=0 H8 S H (S6-S612 )

with C2  dependent on 6 and u. Hence (2.40) hold for l = 2. Let

(2.45) Vk = rku k' k 2 2.
r

Then

-Avk = rk- 2 (r2f) rk in S,

(2.46) VkI rkGOki
e=0 r e=0

= = (rkl + kr Gk e=w1

Let wk = 'vk Then

-Aw k  -"vk - V(vvk - vkAP

and

WkI = prkGOk 0

8=0 r

.0i.
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kw k aW k = p(rk I + krkk-l "
Dn O=W r 61=W r k Gr k-IO-W.

Hence analogously as before

IVklH2, 2 (s CIr k-2(r 2f) kILB (S

+ Ivk l lS + Iv kI.o, -S

+ I~kil + 8 6 6

+ IrkGOkl 2 2  + Irk lkl 1 il
r H '(S 6 ) r 8 (S6

+ k rk-l G 1 k 1 l 1

r 8 CS6)

Because f E B'(Q), G' E B2-i(Q) we have

(2.48a) Irk-2 (r2f) d k k!

(2.148b) r (k f Gi i C d k k
a 86

* ki k

(2.148b) IrkIk,_ < C~d4k!

k-r k8 '-~ 6

(2.48c) kjr k-lG - 1 ( d k k!
k-1 H ill(S 5 5

B 6

Using (2.39) we get

I < Cc d-1 (k-3)!

* 8 ($6S62)

. 6 2
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Ivkl 0< Cc d k-2(k-2)!
1H8 0[S 6 6 2 00

with C independent of k (depending on 6). Hence

(2.49) lvi Cd!
11202 6d 6<
HB S6/2)

with C6 , d6  independent of k and L, D, P. Assume now by induction

that (2.40) holds for k' < k. Then we get using (2.49)

(2.50a)

Irk k k- k-2

ru k+21L (S C6 d k! + 2kLD (k-i)! + k(k-1)LD (k-2)!
r B ,6 /2 )  6 6

lk

< LDk k!

provided that D and L are large enough. Further with P > 1, e.g.

, P = 2

(2.50b) Irku k+1 (S _ C6 dkk + k(k-1)!LDk-1 P < LDk Pk!
r e B 1,6.)

(2.50c) Irkurk 21 (S 1,6/2) C6d6k! < LK Pek!

11

Inequalities (2.50) yield (2.140) with a, 2 2 and a2  2.

Let us now prove (2.40) by induction with respect to a 2 . Let v

r d 'ra.2-2' a 2  2, a' + a2  k, al k 2, then
re

.%
-x -Y
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a12

-Av = r (r2fea2_2) r

and also

-Av = -r ur a I ea 2 - ( 2 a ! + 1 ) r  CUr a +1 e 2 - 2

aL2r1-2u -

c1 ia2- 2  r Lu c1+2 a2-2

Hence

(2.51 ) Ir  Ur a . 2 1 L (S 6 / 2 )

Ira -2(r2f N22) r 1I B(S6/2 + a+1e 2_21LB(S /2)

+ ir r 2  Irl 2 + (2 + Ir t 1 2' 1 a c 1 . a 2, 2 1 /2 1 +2 2-2B 6/2)*

L r r 6

.5 8 6/2 r21-2

Because f E BO () we have

1 a-2 2_233 2
(2.52) Ir (r 2f a2-2) Ol IL (s 6 / 2j _ C dk 2 (k-2)!

e r

By induction assumption

(2.53a) Ir a 1  1 a 2-2LB(S 612  
<  LDk 3  22 - 1

(2.5b) I CEu (11 +2eam221L (S 6/2)_ LD k - 3 Pa2- 2(k-)1r

< L k-2pa 2-2(-)
(2.53b) Ir u + 2 2]L~ 6 / - D P (-)

r B

.5!
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-2 Lk-14p"2-2

u(2.53c) r u L6(6/2) < LD P (k-4)!

re

Hence from (2.47)

(2.54) Ir a u 1 a L (S62 )

*. r e

2i-2 k k-4 a2-2 2
< (k-2)!IC dk 2 + LDk 2P + LDk 3p (2a1+1) + LD P 2- L3d3 +2, 1

< LD k-2P (k-2)!

provided that L, D and P are sufficiently large. Similarly we can

prove (2.40) for a2 2 2, al - 0,1.

Theorem 2.1 is proven for the case i). The other cases are

analogous.

Combining our results for every vertex we easily complete the proof.

B

, |

4' '



3. REGULARITY OF THE SOLUTION OF THE ELLIPTIC EQUATION

IN A POLYGONAL DOMAIN o

In Chapter 2 we analyzed the problem of the regularity of the solu-

tion of the Poisson problem on a polygonal domain. In this chapter we

will consider the general case of the elliptic equation of second order

with analytic coefficients.

3.1. THE PROBLEM AND ITS BASIC PROPERTIES

Let
2 2

(3.1) L(u) I- (ai ) x + b + cu.i,j=1 j~ i i- l

Let us consider the problem

L(u) = f in 0

(3.2) ul r0  = g 0  G0 1r0

auI =91 G 2 1
u__ =g = Girl onr
rn

where

.,00  U Ti, r r - r0
i=D

and nc is the conormal.

Let a be the polygonal domain in R2  and ri  be the open edge

of aQ (see Section 2.').

~ b ~ -.-- *....*c.~....:.-.. ,**~* g*.... .
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About f and gi, i = 0,1 we will make the same assumptions as in
,

Theorem 2.1 but replacing wi by 0 < wi  26 which will be defined

later. About the operator L we will assume

i) ai, j = aj, i, bi, c are analytic function on

i)

2
(3.3) ai,ji + ), 0 > 0,

L,j=I

i.e. the operator is strongly elliptic.

iii) Denote (see Section 1.2)

H1(Q)= [u E HI(Q) u = 0 on r0 1

0

and

B(u,v), u E HI(Q) , v E H1(Q)

be the bilinear form

(3.4) B(u,v) = f' (aijuxvx + b iu x v + cuv)dx.

We assume that

inf sup IB(u,v)I > -Y > 0,

(3.5a) H (Q) H (0)

uH 0(Q) vEH 0 ()

(3.5b) for any v E Hl(Q), v 1 000

sli p IB(u,v)l > 0.

sup

u(H 0

• =1

-., .. U.. . .Ea '..,'.. ,' -, ,..z .. '' .,, . ",'-, , ':> •- ' . ''' ' .-. ' .-.- ' -,.< , ' .. ' ' ... ,'''-"-"" , "-" . .
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Conditions i), ii) guarantee the existence and uniqueness of u E H0(2)

such that

(3.6) B(u,v) = F(v)

holds for any v E HI(Q) for any F(v) E (HI(O))', i.e. F(v) being a

linear functional on HO(Q). In addition we have

(3.7) l < ClFH( ) - (Ho(a))1

0

with C independent of F.

For the proof see e.g. [4], p. 112. Hence we have

Lemma 3.1. Let f E L (Q) = H0' 0 (Q), Gi E H -i, 2-i () and Ir0 I 0,

0 ( 0 i < 1. Hence (3.2) has unique solution u E

H I (Q)  (in the week sense) and

lull CIf IL () + 2-ll 2
H (Q) a i=O,I H (0)

The proof is completely analogous to the proof of Lemma 2.11, only

replacing Lax-Milgram lemma by its generalized form based on (3.5), (3.6),

(3.7). I

Remark. Condition (3.5a) and (3.5b) exclude the case when FO = 0.

Nevertheless this case which occurs e.g. in the case of Neumann problem

and bi = C = 0 can be treated in the usual way by restriction of HI0()

to a modulo space.

Lemma 3.2. Let L0  be the operator (3.1) with a0  0 ofantq

and bi  c 0. Let M be the linear transformation

• ° - o .. *° V....
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(0 -a0 /0 0 0 0 2)111a 0 x2 ) //a70 ,i A a a

1= La1 2xl-a 1  1 A, A (a1 a2 2 - Ia1 2
2

(3.8)

2 = x / a  ,

.1, 2 1 1,1

and u(1 1, 2 ) = u(x1 (1,E 2 ), x2(C1 ,C2)). Then

I

L0u = (-Aa).

and the conormal n in (x! ,x2) transforms into the normal n in
(E,1 ,2). 2)

The lemma follows easily by simple computation.

The transformation M maps the polygonal domain Q into the

polygonal domain f2* with interior angle i' "i

Let now L be the general operator (3.1). By assumption the

coefficient ai, j  are analytic on . Hence we can define mappings Mk

associated to the vertices Ak with a, = a (A and set w =

M(wk).

3.2. THE REGULARITY OF THE SOLUTION

The main theorem of this chapter is

S2-i
Theorem 3.1. Let f EB (Q), gz E B2 (r, i 0,1, B

0 < B. < 1, B. 1 - f/w* (respectively i > 1 r/2w if Dirichlet or

Neumann boundary conditions are imposed on the edges 'i and Fi-1,

i li-= Ai) and r0 4 0. Then problem (3.1) has a ,niqoe solution

in H!(Q) and u
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Proof. The main idea of the proof is the same as in Theorem 2.1, namely

that in the neighborhood of every vertex Ai  the inequality (2.40)

holds. By Theorem 5.7.1, 5.6.11 and 6.6.1 of [16] u is analytic in

and on (open) i'i, 1 i < M.

Let the mapping MZ, maps 0 into Q* with the vertex Ak. mapped

into origin and the edge rt being mapped into rj lying on the axes

1. Defining u(&!, 2) = u(M -1(1,E2 ) ) we have

(3.9) L*(u) = f

where

2 2
(3.10) L*(a) = -Au -I a iju,1,2 + I bj. + cu

i ,j 1 j=1 3

with a1(0,0) 0, and a bj and c are analytic functions in

Let S = fr,e 1 0 < r < 6 , 0 < e < w}, 62 = 6 < 1 and S

* 0*Q*. Let us analyze in detail the case rI_!, r.  rO*. (Let us write

further r, instead of rz.) We have

(3.11) L*(U) on S

0 1 r u r , - : G O I u i

where rk= r, n S. Without a loss of generality we can ass-Lme Go  0

(if not we set v = u - GO). We rewrite (3.10) by replacing u, aij,

bit c, f by u, aij, bi, c,f, and ( ! C2) by (x!,x2). Then

2 2
(3 .12)-Au f,= f + a i1j jU - bju x  cu, ul- = 0.

ij= i ij =1 3 r Ur 1

V

• , -'-I. . ¢ . " ' - - , , ' ' ' , , , ' " " " - " " " " . . , . , ' ' , , - ' . . - • • " " . • " - - ' . - -
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By Theorem 2.1 (see (2.44)) we have for B> 1 - ~and

6<6

(3.13) Iul H2,2 (S C0(if 1L (S ) + lUl S
B 6 6 6/2

where for simplicity we set B = Bi Since ai~j(0,0) = 0 and a1 ,j are

analytic in Q* we have la1,jI . C~r in 96  and hence

(314 la, 'i 61 iI S 1 ij x La( 6

One has

ux Ur Cos e -ue sine6
xl r

U 2  r6 u i 0 sine2
X2 =ur2 Cos ure sir r2  e 2  2

1 si 2 r

1u in2 - 1**2 ue sin 26
r-r

* r

and similar expressions for u ~x and u X2* Using Lemma A2 scaled to
4 x2
the sector S6  we get for Icil = 1

ar -2 al~-2

Ir eu LB( j<C2r 1 Vau 'L(S
1 Ic1 1=2

+ I Ir 1 9I (
Icx'12 6

with C2 2 1 independent of 61.

Hence

d~~~~~~ .*.. **. .--
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(3.15)

lu 2 1 L (SC 2 I -  u I L ( + I'-r V I 1 (S

1 cL (1=2 2_<

-< c1ul H2,2 (S6

Analogously it can be readily proven that (3.15) holds for Uxixj

i = 1,2.

Using (3.1 4 ) in (3.15) we get

2
(3.16) la 1I, ux IL (S C2C1 61 IlI 2 2 ( )

i,j=1 H x 8)6

C3 6tlulH 2 (,2 )
H8 $61

where C3  is independent of u and 61. Let us select 61 so that,

C0 C3 61 < . Then we get from (3.13)

(3.17) lulH 2 2 (s _ OlIfL( 6) + ul ( 6 - 61 2 ) + lul

+ CoC 36 lul 2,2

H6  61

Hence

(3.18) H2, ( S 8H( c[IfLa(6 ) lul 1(s ( + lul H[ (S 1.
8 $6 6

Because a is analytic we have for any jal k

*p .,\ . . . . U *
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(3.19) IDOuIL (S _< C5dkk!

and we have also u E H!(S6). Hence u E H2'2 (S6).

Let now Vk = rku k' k _ 1. Then

(3.20) -AV = f( f (2) on

VkI -S _ - 0

where

(3.21a) f(l) = rk- 2 (r2f) k

k r

2 2
(3.21b) f(2) = rk-2(r 2  I a -r 2  1 bjU r2cu)

k L ,3 =1 j r

As before we have

(3.22) IvkI 2,2 (  c(ifIL(S) + IV I$( )

Since by assumption f E B O(Q) there exists constants Cf, df

such that

(3.23) Ifki)L 8 (s) _ Cfd fd!

Because the coefficients ai, j , bj, c are analytic in there exist

constants C5, d5  such that for lal = k > 0

%;,J -..; ..,.; ,' ," . '. . . . . . - .'.-"- . .- -". . .-". .- . . ". .- . "v .-,
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(32)IDaai Cdk!,

IDO'cI Cdkk!.

Hence for 0 k m <n 2

l~r~i~j rkml C6r (
2-k+m)d 2-k+m)

and for k -rm 22

Therefore for i,j = 1,2

(3.24) Ir k2(r 1a i~~ ui ) k'L (s

k

m= k 3 ijr k r2a(

= Cllmk k
1

L rs 3- mL6(

+ k 1r k-

+mk (mJC d k- (k-!r 1 k-2+(m~k) xL' mi( 6

where

(rn,k) = 2 - k + mn for 0 < k - m 2

(m,k) = 0 for k -m > 2.
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Obviously

(3.26) ID2 u kI r k 2vkI + 2klrk-lu k+1I + k(k-1)Irku kI

and by (A.1O) of Lemma A.4 we get

k 1
(3.27) Iru klLS ) - Ik 2

xx L (SHv'2 2(s6x ixj r $1 HB 6

k- a +3 l -2+ C 7 k!( 2_1 1< (] - 2), !I D uIL (S6 )+ Iul1 H (s
S 2<IaI~k+lT1'! Ba 'L( 1 HU

For m k - 1, by (A.11) of Lemma A.4

(3.28) Ir k-2+ (mk)u MILa(S

M!(M-I+3) Ir I-2

2<mlal m- 2) B~I ( H (S6 ) i
Ua (2<2

Hence

k-1
(3.29) )Ir 2 (r a (U

m=O ij r xi X mrL(S6

k-!a -2

< C k! I dk-m (Cm- a1+3) Ir Da a1 + I ( .
7 m=O 2<1aI1m+2 _ _2) LB(s ) H (s6

Similarly
42

k-2 2 2 2
(3.30) Ir (r bju + r ca) k'L(

j=1 xj r $... .. 61
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k k i 2
< C7k!( I dr7 (I I r Du1 (S ) Jul (s

m=O 2<jaIm+I " s61 Hs1

a 2<12-

Thus

(3.31) IVkl 2,2(s 6 ) -< C 1 IVkI H,2(s

a -21
k-jcaj+3 a I-2

+ C(6)k![( I (II-2): Jr,11  L(S62<lal<k+l

a 2<2

+ J + k d 7  (i- a +3) a *
H (S J mo 2<I1l<m+2 C a -2)! LB(S6

2<a2<2

k k-m a. 1 -2 IL(6

+ I d' 1 D'u
m=O 2<ilaMIl '+L 8L(S)

O<a 2<1

+ C dkk! + lulHk 2  .

Assuming by induction that (2.40) holds for a 2  2 and lal k - 1 and

realizing that for COC61 < '/ we get (2.40) for Ial = k, a 2 
- 2

provided that L and D are sufficiently large.

The same argument as has been used in Section 2 yields (2.40) for

a 2 > 2. So far we have assumed that (r I1  U rj) C r O. In the case

c r , c we proceed analogously. We have

.,

-9
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2 2
-Au = f + I a u - Xb i - cu= f on S, uj -

i,j= 1 'JX xx j=1 1 6:0

au h- (auQ

Tnl [ - (a 1 2 u a 2,2x

GII~ - (a1 ,2ux1 a2,2ux2) = r

with ai,j(0,O) = 0. By (2.44) we have

lul 2,2(S )  - I 11 ,H (S 6 lu(G H ,2(s
8 1 6 2

+ lulH 1 + lUl2H )
H(S 6) HS6-6

and the proof is very similar as before. The same arguments hold for the

case (r£ r. I.) c r. Combining the results for every vertex we get our

theorem. 3
Remark. In the proof that u E B 2 () we have only assumed that the

solution exists. The other conditions, namely (3.4) and (3.5), only

guarantee this existence.

We have assumed that the coefficients ai, j , bit c are analytic on

?. This assumption can be weakened. For example, we can assume that
M

ai j , bj, c are analytic on - Aj and in the neighborhood of A£,
J=1

JDc'(ai'j-aj j(0 0)) I . Cdkk !rz

b-k-!

IDabjI £ Cdkk!r£

* .. ,,5* . ,..~.. -. .*- S* ,.-.-. -%- - ... . . - q' %--.' *'., - ' . % & & * , ' 5. 5 %~ " ". ",'S .*. " - - .
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C 0k-2

ID'C Cdkk!r ,

with E, Eb > 0 arbitrarily, c > 0, cc + Bj > 1, and k Icz.

Nevertheless we will not go here in further details although this case

plays an important role when nonlinear problem is studied.

, r 
°  

-. o. - *- . ,. .- -*. ... - - . . . ' , ..- , .-  *- , . --
s,." . ", -:, "j' . ], k i-, j!3 ,, :,' - .A L ., , - . , .

"
.. . , ., * . ,, .* . . - , ., ."* _'



~.APPENDIX

Leumn A.1. One has the inequality

(A.1) 1 ta 2[z(t)-a]2dt C(a) 1 t,(~- dt,
0 0

where a = z(O) if a < 1, a = z(1) if a > 1.

Proof. For a < 1 we have by Theorem 2.54 of [13]

f s 2 w s I dx < C[f jw'(s)I ds + w(1)], W(O) 0.
*0 0

Because I() 2 f jw'd(s)j ds we have
0

] 1

f s 2Iw(S)I2ds S C f Iw,(s)I2ds
0 0

Setting w~t) =z(t) - z(0) and s t we get

f t-Z )ZoDdt C f tlftIdt.
0 0

For a > 1 we use Theorem 2.55 of [13]

f 1S-21w(5)I2ds 14 f Iw'(S)I 2ds, W(0) = 0.
o 0

Setting t s W(s) = z(s 1- W) for s > 1 and w(s) =0

for s 1. Then we get Al.

62
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Lemma A.2. Let S 6 
= {r,e I 0 < r < 6, 0 < e < w). Then for 0 < B < 1:

i)

L (Si ' L B(S1) I lL (S

ii) for jIa =

a 1 2 2a 
1 -2 2(A3) Ir -D ul ( < C[[ Ir DUlL s) j ul12]

B 1 Ia j=2 1 H1 (S -S )

Proof. The proof is similar to the one of [51.

1) Let

u(r) = u(r,)d
W0

then

u r r U r (r,O)d 0

0

and hence

1 2)

f r 2 1 ur(r)12dr 2 CUlLj(Sl.
0 1(1

Using (A. ) we get

fO r 2 6- 1  Iu(r) - al 2dr < ClU r 2

where a (1), and by the imbedding theorem

1 - 2 )dr.

lal < C f (u r

9.

-. L ,' -.-.- , .-.. ,. * "... """... ",.-.. '..."-..........--'.<-.-. - --- "



64

Hence

Sr 2  1 u(r)13dr < C[j u 2 S

0 1 21l- ' 2( s

and

(A .4 ) 1r - u 2 S < C [ lU rl ( S - l)

Further for almost all r, p we get

u(r,D) - u(r,p) = £ u,(r,@)de

and therefore

lu(r,P)- 5(r)l w-i 7 diP f'fu o(r,)de

0

c[T lu,(r, 1 e ld j 2
0

and

lu(r, )- U(r)l 2 de O C lue(r,e)12d.
0 0

Hence

(A.5) f r 2 -2u(r,)-(r)I 2 r dr dW

C cf r20-2 ju6(r,6)j 2r dr d6.

Combining (A.4) and (A.5) we get (A.2).

2) Let v = ur. Then using (A.2) we have

I.. * '.



r IU r'L2(S1) < C[Iur 12 (S + 6r- 1 I~ S1 u iL(.2~

which Is (A.3) for a, 1, a2  0. Let now denote v = - and repeat

our argument. Let

v(r) 1-f v(r,O)dB

then analogously

(.)Ir' vIL (S < C[Ivt C S1) IVI~ 5 2IS -

CFJr-' U8 IL (S) + 2r ( 2(,-3

Now

(P u

v(r,cp) 0 0,~) = d6

and hence

Iv(r,(p) - (r)1 2d f C e

Multiplying this equation by r2 a-1 and integrating with respect to r

we get

(A. 7) J 7 r2 1vr) -(rIr dr d(P
0 0

2

0 0 r

Combining (A.6) and (A.7) we get (A.3).S

LemaA.3. For 0< 8(<1 one has



66

2r - c 2 ~ 2

(A.8) Ir-l u (2 < C[ IDu1 2(S L= (SL) + IL (s-S .

For I = 1

(A.9) I-1 DIL(s) < IDI (S + lula C]"
-LS 11-2 L8 H (sS/)

Proof. Because

j lDaul l Ir 1 DL (S -L (SIji1 ) Ic=1 1

(A.8) follows immediately from (A.2). Let v = Dau. Then (A.9) follows

immediately from A.8. U

Lemma A.4. Let S j{r,O I 0 <r < 6, 0 < e < wl. Then for k < 0,

i,j = 1,2

(A.10) Irku kIL (S) IrkIV2u ku JL (S)
A i j

( C k [ ()2 I (s)
+ Ck! _2), r Pl + jul

2<I al<k+l H(S)
m-'. 0<ci2<2

-~ 2-<

and for m k - 1, k 1, i,j = 1,2

(A.11) Irk - 2 + (mk)u m1L (S)
x.x.rMI ( )

J

< Cm!( m-a l 1 -2 + Ii

*_< Ial<m+2 H (S)
2 0(o<2
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and

(m,k) = 2 - k + m for 0 < k - m < 2

(m,k) = 0 for k - m > 2

and C is independent of u, but depends on 6 and w.

Proof. We will prove A(10) only for i = 1, j = 0. Proof of the other

two cases is completely analogous. We have

2sin 20

2U 2 Cos
2  Ure r + 2 u 2 sin0 - rUr sin2a --2 U sin 2e.

1 r r

Hence

(A.12) r k = r (u Cossin 20
u2 k 2 k+1 r(A.12)

xlr r r e

2k-12 U k2 )sin 8)k- sin 28 1 2

r rr =

ki
+ sin 2e I (-1)k-I(k)(k-0)r- Z+1

k

- sin 6 1 (-1)k/I(k)(k- +1)!r -Z=0 rze

which yields

(A'3) Irku 2 kL (S) < Irk ID 2 u k I L (S)
x~r 6r

4
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o i-. Ir 1u ,+ I*L (s) L E * ,r 2 (S)

r e8 ",O i r

k- 1 Z-1 S) k- k- ki r -2
" , k!r u IrI[}

" ki rZ1u+ kl(k11 I -i=+ r 1 + j t - r Ure L (S)r B r 8

" Ir2iV 2u k2'L CS) + Ck!( N -11- ) Ir ul (s)
r O2<Ic _<k+' 8

-2

+ Ir-UrIL (S) + Ir u0 l, I sL

(A.13) combined with Lemma 2 yields (A.iO).

The proof of (A.11) is quite analogous as above. S

4

,..,
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